
Agile Planning, Tracking and 
Project Management
Boot Camp

XP Agile Universe Conference
Calgary, Alberta, Canada

August 15, 2004



2

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Your Instructor

Paul Hodgetts
Founder and CEO of Agile Logic
Team coach, trainer, consultant, developer
21 years overall, 4½ years agile experience
Contributing author (Extreme Programming Perspectives)

Presenter at conferences (ADC, XPAU, JavaOne)

Agile Alliance Program Director
Member of CSUF agile advisory board
Contact info: www.agilelogic.com phodgetts@agilelogic.com



3

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Why Is Agile Project Management Hot?



4

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

This Tutorial

Looks at agile development from a project 
manager’s perspective
Information useful to understanding how to do 
project management for an agile project
Exercises to help gain a feel for some of the 
concepts and practices



5

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Plan

Agile Project Management Concepts
The Agile Project Community
Three Views of an Agile Project
“Managing” the Project



6

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Agile Project Management Concepts

What Is Agility?
What Benefits Are We Trying to Gain from an 
Agile Approach?
What Makes Agile Project Management 
Different?
The Agile Process Landscape



7

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

What Is an “Agile” Process?

According to the Merriam-Webster on-line 
dictionary “agile” means:

“1: marked by ready ability to move with 
quick easy grace;”
“2: having a quick resourceful and adaptable 
character.”

In agile software development, “agile” tends to 
mean “the ability to respond to change.”



8

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Change in Projects

Changes in Requirements and Priorities
Changes from Technology and Tools
Changes from People
Changes from the Inherent Complexity of 
Software



9

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Changes in Requirements and Priorities

Stakeholders learn from the solution
Learn what their true needs are
Learn how to better communicate their needs

Business environment and conditions change
Business processes are re-engineered



10

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Changes from Technology and Tools

We are often learning new things on the fly
Actual capabilities may vary from expectations
Combinations create compatibility issues
New versions are released



11

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Changes from People

Team composition changes over time
Team interactions are complex
Individual behavior can be unpredictable



12

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Changes from the Inherent 
Complexity of Software

Network of dependencies is very large
Solutions need recursive feedback and 
validation
Difficult to predict activities and dependencies



13

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Agile Project Management Concepts

What Is Agility?
What Benefits Are We Trying to Gain from an 
Agile Approach?
What Makes Agile Project Management 
Different?
The Agile Process Landscape



14

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

What Are We Trying to Gain 
With an Agile Process?

Respond to change and leverage learning
Deliver the highest business value (ROI)
Decrease time-to-delivery
Increase productivity and efficiency
Produce better quality solutions
Create a more fulfilling development culture



15

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Agile Project Management Concepts

What Is Agility?
What Benefits Are We Trying to Gain from an 
Agile Approach?
What Makes Agile Project Management 
Different?
The Agile Process Landscape



16

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

What’s Really Different About 
Managing an Agile Process?

Iterative and incremental
Parallel and concurrent, not phased
Planned around deliverables, not activities
Dynamic project balancing via scope adjustments
Heavy emphasis on collaboration
Management by facilitation



17

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Iterative and Incremental

Iterative
Repeatedly executing nested process cycles
Iterations provide synchronizing points
Iterations provide feedback points

Incremental
System is built in progressive stages
Iterations add features and refinements
Each increment is a working system



18

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Phased vs. Concurrent Activities

Phased Approach
Gathers similar activity types together
Preference towards serial completion
Ultimate in phased approach is waterfall

Concurrent and Parallel
Activities occur opportunistically
Activities of all types happening at same time
Partial completion considered the norm



19

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

“Predictive” Planning

Creation of comprehensive activity-based plans
Execution of defined activities to follow plan
Management by controlling activities to 
conform to plan



20

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

“Agile” Planning

Creation of prioritized set of deliverables
Opportunistic execution of activities to create 
deliverables
Management via feedback and adaptation



21

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The “Classic Trio” of Software 
Development

Resources
Time
Scope
Must be in balance for a healthy project

Time Resources

Scope



22

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Resource Variable

Staffing is usually the least effective variable to 
adjust.

Staffing increases have long lead times.
Increased intensity has diminishing returns.
Team culture requires some degree of stability.

Tools and technology can provide benefits.
Effective tools provide continuing benefits.
Front-end costs need to be carefully amortized.
The wrong tools and technology increase friction.



23

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Time Variable

Can be the most painful variable to adjust
Early commitments are usually date-based.
Target dates are often the most important 
objective.
Within a date boundary, there’s only so much 
time.



24

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Scope Variable

Can be the most effective variable to adjust
Can adjust scope breadth – what’s included.
Can adjust scope depth – refinement.
Partial scope can often generate immediate 
returns.
It is often preferable to reach a date with 
partial scope completely finished, rather than 
complete scope partially finished.



25

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Project Balance in an Agile Process

Sustainable resource management
Stable teams
Steady pace
Favor high ROI tools and technology

Fixed time management
Time-boxed development cycles

Adaptive scope management
Feedback-based scope adjustments



26

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

“Heroic” vs. “Collaborative”

Heroic development emphasizes individuals
Activities assigned to individuals
Project results heavily dependent on 
individual performance
Increases “keyhole” risks

Collaborative development emphasizes teams
Teams self-organize activities to meet goals
Teams leverage diverse skills
Teams mitigate keyhole risks



27

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Management by Facilitation

Command and Control Strategy
Decisions made by central authorities
Activities delegated
Manager controls activities

Facilitation and Empowerment Strategy
Decisions made by those with the most info
Activities accepted
Team self-manages and adapts
Organization ensures supportive environment



28

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Agile Project Management Concepts

What Is Agility?
What Benefits Are We Trying to Gain from an 
Agile Approach?
What Makes Agile Project Management 
Different?
The Agile Process Landscape



29

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The World of Agile Processes

Extreme Programming (XP)
Feature-Driven Development (FDD)
DSDM (Dynamic System Development Method)

Scrum
Crystal Family of Processes, e.g. Crystal Clear
Lean Software Development
Adaptive Software Development (ASD)
Others: Agile UP/RUP, Evo, Win-Win Spiral



30

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Agile Alliance

2001 – representatives from agile processes meet in 
Snowbird, Utah.
Agreed on a “manifesto” of values and principles:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

“That is, while there value in the items on the 
right, we value the items on the left more.”



31

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Plan

Agile Project Management Concepts
The Agile Project Community
Three Views of an Agile Project
“Managing” the Project



32

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Project Community

The “Business” or “Customer” or “Product 
Owner” role
The “Developer” role
The “Manager” role
Emphasis on a “Whole Team” approach

While each role represents certain interests 
and is perhaps assigned accountability for 
certain aspects of the project, the team as a 
whole maintains interest in and responsibility 
for the overall project.



33

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Business / Customer Role

Brings to the table:
Understanding of the business and product needs
Specific definitions of features (requirements, scope)
Priorities
The ability to accept the product

Speaks as a single voice to team
Is likely to be multiple stakeholder types
Is likely to have a multiplicity of stakeholders
Stakeholders may be represented by proxies



34

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Business / Customer Role

Potential members:
Product Managers
Marketing, Sales
Business Analysts
Quality Assurance (acceptance testing)
End Users, Their Managers
Business/System Operations
Others when acting as a stakeholder



35

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Developer Role

Brings to the table:
Ability to create and communicate solutions
Cost estimations and explaining trade-offs
Delivering usable functionality that meets 
requirements and priorities

Ideal is a group of wide-ranging generalists
Likely to consist of specialists to some degree
“Generalizing specialists” preferred



36

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Developer Role

Potential members:
Programmers
Architects and Designers
Technical Leads
Interface Architects/UI Designers
Database Designers and DBAs
Operations and Network Designers



37

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Manager Role

Brings to the table:
Defines overall organizational goals
Interfaces with organizational entities (status)
Environmental support (facilities, equipment)
Cultural support (organizational values)
Personnel administration (reviews, hiring, etc.)
Business administration (budgets, etc.)



38

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Manager Role

Potential members:
Owners, Shareholders
Board of Directors
Executive Management
Project Management
Technical Management, Administrative 
Management
Process (Quality and Process Engineering)



39

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Plan

Agile Project Management Concepts
The Agile Project Community
Three Views of an Agile Project
“Managing” the Project



40

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Three Views of an Agile Project

Work Products
Cycles
Timeline of Events



41

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Work Product Structure of 
Agile Development

Incremental Building Blocks
Business Objectives
Projects and Products
Feature Sets
Sagas and Stories
Technical Work Units (Tasks)
Technical Integrations

Traceability through the Deliverables



42

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Cycles of Agile Development

Project Cycle
Release Cycle
Iteration Cycle
Task Cycle
Episode Cycle

Forward-Driving Activities
Resolution Increases
Feedback through the Cycles



43

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Cycles of Agile Development

Charter Preparation Release Release Release Wrap Up

Planning Iteration Iteration Iteration Delivery Retrospect

Planning Task Task Task Build & Test Retrospect

Pull Task Episode Episode Episode Story Test Retrospect

Pair Up TDD TDD TDD Integrate Retrospect

Write Test Write Code Refactor

1 to 6 months

1 week to 1 month

½ to 2 days

15 minutes to 2 hours

5 to 30 minutes



44

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Project Cycle

Chartering
Preparation
Release Delivery…



45

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Chartering the Project

Elements of a Charter
Defines the overall mission
Defines specific, testable goals – “business 
stories”
Defines schedule constraints
Defines available resources and limits
Defines the project community, roles and 
accountability 



46

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Developing Product Strategies

Not a formulaic operation – requires some leg 
work
Based on product development best practices

Market research
Competitive analysis
Customer feedback



47

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Exercise

Congo.com is a new on-line retailer of 
technical books. They need to establish 
themselves against the other river.
Write a charter for Congo’s new project.

What strategies could they use to break into 
the market?
How can we express those as business stories?
Constraints, resources, team at your 
discretion.



48

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Developing Feature Sets

Canonical XP is incremental and just-in-time
Need a car… A convertible… A red one… With 
under 15,000 miles…
We tend to ask for the highest values parts 
first

But some forces favor more up-front work
Highest value nuggets not obvious
Larger plans required for funding
Contracts specify “fixed” scope



49

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Exercise

Given Congo’s charter and strategy, develop a 
list of candidate feature sets and features that 
would implement the charter and strategy.



50

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Preparing Requirements

Use best practices – use cases
But don’t over-do it

Cockburn’s lighter-weight format
Constantine’s essential use cases

Overall use cases useful for generating a shared 
mental model
Fill in detail as incrementally as possible



51

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Use Cases vs. User Stories

A story is not a use case, a use case is not a story
A use case defines functional requirements in total
Defines breadth and depth of system behavior
Additional non-functional requirements often needed
A story defines a piece of system capability to be 
implemented
Stories as change requests – add, modify or remove 
capability



52

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Generating Stories from Use Cases

The overall set of use cases is the quilt
The stories are the patches that are 
incrementally sewn together to fill it in
Story scope – what use case(s) are being asked 
for?
Story breadth – what use case scenarios are 
being asked for?
Story depth – what level of completion is being 
asked for?



53

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Example of Uses Cases and Stories

Overall set of use cases for shopping cart 
system:

Customer Views Catalog
Customer Adds Book to Shopping Cart
Customer Checks Out Order
Warehouse Clerk Enters New Shipment 
Received
Customer Service Rep Checks Shipping Status



54

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Example of Uses Cases and Stories

Single Use Case in More Detail:
Customer Checks Out Order, Card Accepted, Card Type X

Step 1
Step 2…
Calculate Discount
Calculate Tax
Authorize Payment
More Steps…

Customer Checks Out Order, Card Denied, Card Type X
Customer Checks Out Order, Card Accepted, Card Type Y



55

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Example of Uses Cases and Stories

Example of a story that maps to use case:
“Implement the Customer Checkout use case. 
Handle only the card accepted, card type X 
scenario. Don’t worry about sales tax or 
discount calculations at this point.”



56

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Example of Uses Cases and Stories

Example of a cross-cutting story
“Implement sales tax calculations. Sales tax 
calculations are needed in these use cases: 
Review Shopping Cart, User Checkout, Admin 
Review Order. Handle only a single fixed 
sales tax rate at this point – don’t worry 
about state tax tables.”



57

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Why Would We Go Though All This?

Good stories are the essential building blocks of release 
plans
Increase the value of the software

Scope the highest priority stories to the core business 
value

“Minimal Marketable Feature” – MMF
Early delivery of MMFs

Accelerates break-even on the project
Increases the Net Present Value (NPV) of the project



58

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Release Cycle

Release Planning
Delivering Iterations…
Release Delivery
Release Retrospective



59

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Release Planning

Presenting Stories
Estimating Stories
Estimating Velocity
Story Selection and Prioritization
Create the Plan



60

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Presenting Stories

Stories are discussed and understood (analysis)
Developers determine overall technical 
approach (architecture and design)



61

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Estimating Stories

For a release plan, goal is to relatively quickly 
sort the stories into groupings of coarser-
grained sizes.
We’re not trying to calculate effort to any 
degree of precision.



62

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Story Estimate Sizes

Story estimates are probabilities
Choose estimate “bucket” sizes, e.g. 1, 2, 3, 5, 8
Small stories implement the “small batch size” principal
Smaller stories allow more of the team capacity to be 
used
Smaller stories have less chance of catastrophic 
overruns
Suggest limiting max size to one-half an iteration



63

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Estimating Stories using Relative Estimates

Choose an “average” sized story
Assign a mid-range value to it
Compare each remaining story against it
Assign a relative value to each
Can break team away from being too precise



64

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Estimating Stories using Ideal Days

Developers determine uninterrupted time to 
complete
Can lead to issues due to perceived precision
Whose ideal day is it?
If team systemically over- or under-estimates, 
ideal day estimates can turn into relative 
estimates
Can give the team a reference point



65

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Estimating Issues

Estimates require:
Sufficient level of definition
Ability to understand technical issues

Encourage team to talk through the issues
Not enough level of definition

Table the story
Have the customer bring it back when ready

Insufficient understanding
Table the story
Spin off an investigative task to address (spike)



66

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Estimating Velocity

When using relative estimates, just have to 
guess on the first one and then employ 
feedback
When using ideal days, take number of 
developers X iteration length X an overhead 
factor (usually .4 to .8)
Optionally, take number of work streams 
(pairs) X iteration length X a lower overhead 
factor



67

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Create the Plan

Story selection and prioritization
Highest value stories favored
Release objectives and themes considered

Choose a target release date
May be contingent on a minimal scope 
delivery

Arrange stories into probable iterations
Based on prioritization



68

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Sample (and Simple) Release Plan



69

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Release Re-estimation

Customer refines the product strategy
Business needs may change
Stories added or modified
Team learns about non-systemic over- or 
under-estimation, e.g. on all rules engine work
Try to schedule on an iteration boundary



70

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Iteration Cycle

Iteration Planning
Delivering Tasks…
Iteration Delivery
Iteration Retrospective



71

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Iteration Planning

Estimating velocity
Presenting Stories
Task Breakdowns
Task Estimating, or Not
Task Sign-Ups, or Not



72

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Estimating velocity

The first iteration uses the release planning velocity
Subsequent iterations use a “yesterday’s” weather 
velocity

Could be exactly the same as last iteration
Could be a moving average (3 or 5)
Could be modified based on known factors (vacations, 
etc.)

Always make sure the team can commit to the velocity



73

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Presenting Stories

Stories selected may deviate from original 
release plan

Actual progress may be different
May need to consider specialized resources

Stories are discussed in greater detail (analysis)
Developers determine mid-level technical 
approach (design)



74

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Task Breakdowns

Developers create a task list for each story
Tasks are technical tasks
Vertical slices preferred over horizontal slices
Sometimes technologies and specialties drive 
tasks



75

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Task Estimating, or Not

Some teams also estimate tasks in ideal hours
Can provide feedback on accuracy of story 
estimates



76

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Task Sign-Ups, or Not

Some teams sign up for tasks at planning time
Maintains developer and estimate 
relationship
Go around the team, each developer signs up 
for a task and places their estimate on it

Others pull tasks on an as-needed basis
Allows resources to more opportunistically 
work on tasks
Estimates can be collective or at pull time



77

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Sample Iteration Plan



78

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Iteration Recovery

Iteration stability buffers the team against too much 
change
Short iterations enable the buffer to remain intact
Sometimes the set of stories for the iteration must 
change
Gather the team for a short planning discussion
If possible, adjust the iteration plan and continue
If necessary, abort the iteration and start a new one



79

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Task Cycle

Pulling a Task
A free developer chooses next available task
Consideration for priorities
Task-level dependencies likely

Delivering Episodes…
Task Delivery

Tested and integrated

Story Delivery
Story passes customer acceptance tests

Task Retrospective



80

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Episode Cycle

Getting Ready
Pair Programming
Verify understanding (analysis)
Determine detailed technical approach (design)

Fine-Grained Development
Test-Driven Development

Integration
Changes must pass tests
Changes added to the shared artifacts

Episode Retrospective



81

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Exercise

The provided table of stories represents the raw 
materials for release and iteration plans.
Consider only priority and size. How would 
you arrange them to produce the “best”
overall plan?
Now consider feature sets. Any changes?
Now consider dependencies. What changed?
Now consider specializations. What changed?



82

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Timeline of Agile 
Development

Release Events
Iteration Events
Releases and Iterations synchronized to time
Daily Events
Tasks and Episodes not synchronized to time



83

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Release Events

Project chartered and approved
Stories ready for release planning
Ready to start iterations
All acceptance tests pass for the release
Release deployed to end users



84

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Iteration Events

Time box begins
Ready to start task development
System is built and new stories pass 
acceptance tests
Iteration time box ends



85

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Daily Events

Basic Stand-Up Protocol – Status, Plans, 
Needs
Dynamic Daily Task Planning
Tips for Running Effective Stand-Up Meetings



86

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Plan

Agile Project Management Concepts
The Agile Project Community
Three Views of an Agile Project
“Managing” the Project



87

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

“Managing” the Project

Project management shifts to:
Gathering information
Facilitating communication
Pointing things out

Feedback and Metrics
Tracking and Reporting
Diagnosing



88

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Feedback and Metrics

Objective feedback
Data gathered
Current state of artifacts

Subjective feedback
Retrospective comments
What’s not said



89

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Some Essential Metrics

Amount of work for the release/iteration
Measured in count of story estimates

Amount of work completed
Measured in count of story estimates
Make sure the story is really complete

Velocity
Measure in story points per iteration



90

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Other Useful Metrics

Estimate accuracy
Comparison of actuals to estimates
Correlations to feature type, technology, etc.

Actual cost of features
Developer time to produce story points

Quality
Defects found at various testing points

Progress towards business objectives
Portion of feature sets and strategies 
completed



91

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Other Useful Metrics

Metrics to encourage specific practices
Measuring number of unit tests over time

Code size and quality
Measuring number of things over time
Measuring complexity/dependencies over 
time

Value stream for features sets and features
How long before value is realized?
What happens to it along the way?



92

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Tracking

Leverage the process flow for tracking points
Completion of cycles, key events

Collect data in small increments
Avoid recreating history

Use lightweight mechanisms
Collect raw data
Offload compiling data from the team

Use retrospectives for subjective information



93

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Reporting

Leverage the natural project artifacts for 
reporting

Plans and tracking data
Reformat for outside consumption if needed

Keep reports simple and direct
Visual reporting – charts and graphs

Make reporting accessible and unavoidable
Big Visible Charts
Project Dashboard



94

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Sample Burn-Up Chart

Feature Completion

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

(st
ar

t)

03
/30

/04

04
/06

/04

04
/13

/04

04
/20

/04

04
/27

/04

05
/04

/04

05
/11

/04

05
/18

/04

05
/25

/04

06
/01

/04

06
/08

/04

06
/15

/04

06
/22

/04

Iteration End Dates

Fe
at

ur
e 

Po
in

ts

Drug Testing
Release 3x
Release 3B+
Release 3A
Moving Ave. Velocity
Average Velocity
Planned Velocity
Completed



95

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Diagnosing a Project

Leverage retrospectives
Focus on meaningful issues

Look for unexpected or large variances
Correlate improvements to ability to deliver

Strive for continuous improvement
Target something, however small, each iteration
Kind of like refactoring the process



96

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Retrospectives

Retrospectives ask:
What went well, what didn’t?
What things do we want to keep doing?
What things do we want to change?

Capture retrospective results
Summarize and keep visible to the team

Create targets for action
Each retrospective, follow up on prior targets



97

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Completion Criteria

We want to ensure we are really complete
Acceptance tests must pass
Resulting artifacts meet “goodness” criteria
The system is fully built and integrated

Partial completion produces “debt”
Often hidden work that still needs to be done
Payoff of principal will add stories/tasks
Often debt carries interest that affects 
velocity

Watch for signs of debt in your project



98

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Other “Process Smells”

Chronically missed estimates
Deferred activities, not ready to move forward
Artifacts that no one consumes
Artifacts that sit around too long
Extras in feature implementations
Inability to focus on task at hand
Idle people looking for work or waiting
Friction, extra effort



99

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

More “Official” Things

Agile processes can be sufficiently “disciplined”
and “defined”
May need additional formality and ceremony
Agile cycles can be wrapped in Six Sigma
Agile teams could be at least CMM level 3
PMI/PMBOK does not seem agile-compatible

PMI emphasizes activity plan conformance
Agile emphasizes work state management
PMBOK adopting iterative/incremental?



100

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Retrospective



101

Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Thank You for Attending!
Enjoy the Conference!


